Update: Testing Exadata, the new Oracle database machine

9 December 2008

Anton Topurov Eric Grancher Elzbieta Gajewska-Dendek

- Oracle Database Machine
- Exadata Storage Server Hardware
- Exadata Features
- Beta Testing
- Recent Tests
- Conclusions

Oracle Database Machine

- 8 DL360 Oracle Database servers
 - 2 quad-core Intel Xeon, 32GB RAM
 - Oracle Enterprise Linux
 - Oracle RAC
- 14 Exadata Storage Cells (SAS or SATA)
 - Up to 14 TB uncompressed user data on SAS
 - Up to 46 TB uncompressed user data on SATA
- 4 InfiniBand switches
- I Gigabit Ethernet switch
- Keyboard, Video, Mouse (KVM) hardware
- Hardware Warranty
 - 3 YR Parts/3 YR Labor/3 YR On-site
 - 24X7, 4 Hour response time

Exadata Storage Server Hardware

Exadata Storage Server

Racked Exadata Storage Servers

- Building block of massively parallel Exadata Storage Grid
 - Up to 1GB/sec data bandwidth per cell
- HP DL180 G5
 - 2 Intel quad-core processors
 - 8GB RAM
 - Dual-port 4X DDR InfiniBand card
 - 12 SAS or SATA disks
- Software pre-installed
 - Oracle Exadata Storage Server Software
 - Oracle Enterprise Linux
 - HP Management Software
- Hardware Warranty
 - 3 YR Parts/3 YR Labor/3 YR On-site
 - 24X7, 4 Hour response

Exadata Important Features

Database aware storage – does:

- Predicate filtering
- Column projection filtering
- Join processing (star-joins for DWH)
- Tablespace creation
 - eliminates the I/O associated with the creation and writing of tablespace blocks
- I/O resource management inter and intra database

Testing Exadata Storage (2)

[JST]: Exadata beta testing

- 2nd phase of testing, 23-24 Oct
- Exadata test setup in Reading, UK
- PVSS swingbench benchmark
- Continuation of the tests from August

CERN SUSER10 SUSER02 openlab Operators SUSER01 **EVENTLASTVAL1** ELEMENT_ID Inserts+Queries TS VALUE_NUMBER STATUS MANAGER USER TEXT VALUE_STRING VALUE_TIMESTAMP CORRVALUE_NUMBER OLVALUE NUMBER CORRVALUE_STRING OLVALUE STRING CORRVALUE_TIMESTAMP OLVALUE TIMESTAMP Valarch.InsertHistory() EVENTHISTORY_001000041 PK ELEMENT_ID PK TS PK SYS ID VALUE NUMBER STATUS MANAGER USER BASE TEXT VALUE_STRING nnn VALUE_TIMESTAMP CORRVALUE NUMBER OLVALUE_NUMBER CORRVALUE STRING **PVSS** Hardware OLVALUE_STRING CORRVALUE TIMESTAMP OLVALUE TIMESTAMP Clients tools

PVSS Workload Simulator

Created within Swingbench Framework

Tests

- Continued the tests started in August
- 4-Node RAC with 4 Cells storage
- 10 GB SGA
- 20 GB Tablespaces, 5 MB Uniform size
- Last stable point 145000 changes/s

op

Fast file creation (1)

- Feature of Exadata
- _cell_fcre = true
- 17 seconds for 20 GB Tablespace
- Little spike in execution times
- Much below 1000 ms

threshold

Fast file creation (2)

- _cell_fcre = false
- ~ 2 minutes to create
 20GB tablespace
- Much bigger spike
- Higher then 1000ms threshold

Conclusions

- 4-Node RAC setup with Exadata storage:
 - could sustain up to 145 000 changes/s
 - bottleneck on concurrent change of control files
 - Much faster file creations lead to less spikes in execution times
- Overall better performance with Exadata storage features on.
- Next steps:
 - possibility get hardware onsite
 - or get Exadata software installed on our storage

